
J Glob Optim (2009) 45:645–666
DOI 10.1007/s10898-009-9403-5

On optimal zero-preserving corrections for inconsistent
linear systems

Paula Amaral · Luís M. Fernandes · Joaquim Júdice ·
Hanif D. Sherali

Received: 20 April 2007 / Accepted: 19 January 2009 / Published online: 11 February 2009
© Springer Science+Business Media, LLC. 2009

Abstract This paper addresses the problem of finding an optimal correction of an incon-
sistent linear system, where only the nonzero coefficients of the constraint matrix are allowed
to be perturbed for reconstructing a consistent system. Using the Frobenius norm as a mea-
sure of the distance to feasibility, a nonconvex minimization problem is formulated, whose
objective function is a sum of fractional functions. A branch-and-bound algorithm for solv-
ing this nonconvex program is proposed, based on suitably overestimating the denominator
function for computing lower bounds. Computational experience is presented to demonstrate
the efficacy of this approach.

Keywords Infeasible systems · Nonlinear programming · Fractional programming ·
Global optimization

1 Introduction

Mathematical modeling of real-life environments, which are often complex and ambiguous,
is frequently the first step in the process of deriving insights into making the best decisions.
In this paper, we focus on mathematical models described by linear systems. Translating

P. Amaral (B)
Departamento de Matemática, Universidade Nova de Lisboa, Monte da Caparica, Portugal
e-mail: paca@fct.unl.pt

L. M. Fernandes
Instituto Politécnico de Tomar and Instituto Telecomunicações, Coimbra, Portugal

J. Júdice
Departamento de Matemática, Universidade de Coimbra and Instituto Telecomunicações, Coimbra,
Portugal

H. D. Sherali
Grado Department of Industrial & Systems Engineering, Virginia Polytechnic Institute & State University,
Blacksburg, VA, USA

123

646 J Glob Optim (2009) 45:645–666

a decision problem from a natural language into a mathematical structure, as is done in
linear programming or constraint programming, is a powerful tool to understand the problem,
construct a suitable abstraction, find appropriate solutions, and conduct sensitivity analysis.
In general, modeling such problems is usually a compromise between accuracy and tracta-
bility. Frequently, deterministic data is assumed even when we are dealing with estimates
alone. The difficulty of solving a multiparametric problem is a handicap for dealing with
multiple and independent perturbations on data. On the other hand, methodologies that can
incorporate inherent sources of uncertainty in the mathematical model itself are better suited.
Mathematical models can also be restructured from the viewpoint of feasibility for a pos-
terior implementation. In this case, as the result of an overly demanding approach, it can
happen that the mathematical model is inconsistent, in the sense that there are no feasible
solutions for the model. As the model evidently reflects the purposes of the decision-maker,
some minimally corrective action must therefore be taken in order to overcome the deadlock
created by the inconsistency. As discussed in [11,14,20–25,34], it is possible to analyze the
model to extract some relevant information concerning the infeasibility of the system.

It may also be interesting to evaluate the distance to feasibility for ill-posed problems
[32,33], or to study some theoretical aspects regarding duality concepts for inconsistent sys-
tems [18,38,39]. Additionally, from a practical point of view, it is worthwhile to perturb the
model in order to find a feasible neighboring formulation in a defined sense [4–7].

Removing constraints is a possible action to repair the model. In [26], the authors pro-
posed a method to remove constraints in order to obtain a feasible set, based on an hierarchical
classification of constraints. Another possibility is to remove a minimal set of constraints.
This problem is however NP-hard [11]. Heuristic approaches can be implemented based
on the generation of Irreducible Inconsistent Systems (IISs) [14,15,37]. An IIS is a set of
inconsistent constraints for which every proper subsystem is consistent. There exist several
algorithms for finding an IIS [1,2,13,30,42]. Most commercial solvers, such as CPLEX [17]
and LINDO [29], have efficient implementations for finding IISs. A feasible set of constraints
can be obtained by iteratively generating an IIS and removing one constraint from it, and then
repeating this process. In the end it is sometimes possible to reintroduce some constraints
that no longer need to be removed to achieve feasibility. This type of approach ignores some
inherent relations between the decision variables, which might be acceptable in certain cases,
as, for example, when the deleted restrictions are soft constraints. However, this procedure
can be completely inadequate in situations where it is preferable to derive a feasible model
that essentially retains the parent constraints, but due to parameters approximation, it is
admissible to perturb those parameters to some extent.

Consider a general inconsistent linear system:

n∑

j=1

ai j x j ≤ bi , i = 1, . . . , m0,

n∑

j=1

ai j x j = bi , i = m0 + 1, . . . , m,

defined by the matrix A = [ai j] ∈ R
m×n and right-hand side (RHS) b ∈ R

m . Note that this
inconsistent system might typically be a manageably sized IIS arising from a larger parent
model. We are interested in finding an optimal perturbation of the RHS, p ∈ R

m , and the
matrix of coefficients, H = [hi j] ∈ R

m×n , which minimizes a measure of the total per-
turbation, given by the function ϕ(H, p). Hence, we seek to solve the following nonlinear
program:

123

J Glob Optim (2009) 45:645–666 647

Minimize ϕ(H, p)

subject to
n∑

j=1

(ai j + hi j)x j ≤ bi + pi , i = 1, . . . , m0, (1)

n∑

j=1

(ai j + hi j)x j = bi + pi , i = m0 + 1, . . . , m,

x ∈ �,

where � is a convex set containing all the constraints that are not to be perturbed. The
most common choice for this set (as assumed herein) is � = {x : l ≤ x ≤ u}, where
−∞ < l j < u j < ∞, ∀ j = 1, . . . , n. The inclusion of these bounds are assumed to be
logically, technically, and practically appropriate and therefore, not subject to perturbations.
However, whenever such bounds are open to perturbation, we can incorporate the relevant
bounding relationships within the structural constraints in (1), and assume that the decision-
maker has subsequently imposed hard logical bounds within �. These bounds are not only
required for technical algorithmic reasons, but also, from a practical point of view, they rep-
resent an effective domain of search for the user. It is also perfectly reasonable to assume that
the underlying application can reasonably prompt an acceptable decision variable interval.
Many practical applications logically imply the nonnegativity of variables, thus providing a
natural lower bound, that cannot be reduced. A sufficiently large number can be used as an
upper bound.

Regarding previous methods on this subject, to our knowledge, Vatolin [40] was the first
to present an algorithm for finding an optimal correction to an inconsistent linear system. In
his work, a family of objective functions (to minimize the distance between the original and
the corrected problem) was considered, and a set of linear programming problems had to be
solved in order to find an optimal correction. The familiar norms ‖ · ‖∞ and generalized
norms ‖ · ‖�1 and ‖ · ‖�∞ for matrices 1 are particular cases of the proposed family of
functions. It was further shown in [3] for the particular case, where m0 = m and � = R

n ,
that 2n + 1 linear programs are required to be solved for the l1 and∞ norms, and 2n for the
l∞ norm. Moreover, a fixed structure for the data perturbation always results. More precisely,
the optimal solution for (1) consists of changes in only one column of (A, b) for norms l1
or∞, while for the l∞ norm, the perturbation of the coefficients of every row is the same,
differing only in sign. Therefore, instead of random small perturbations, a constant pattern
for the correction matrix is obtained when the proximity criteria between the original and the
perturbed model is measured by these norms.

This result provided a strong motivation in [8] for investigating the effect on the pertur-
bation matrix by using the Frobenius norm, that is, by setting ϕ(H, p) = 1

2 ‖ [H, p] ‖2F in
Program (1), where for G = [gi j], we have ‖ G ‖2F=

∑
i
∑

j g2
i j . A branch-and-bound algo-

rithm based on the so-called reformulation-linearization-convexification technique (RLT)
[35] was proposed for finding an optimal correction [8]. Computational experience reported
in [8] showed that this approach was successful for handling medium-scale problems. Fur-
thermore, the importance of finding a model correction approach that preserves the original
zeros was stressed. In fact, a zero in a constraint means that the corresponding variable does
not contribute to it. So, typically in practice, the correction of the linear system into a feasible
one should not modify the zeros of the matrix of the constraints of the problem.

1 For G = [gi j], we have ‖ G ‖∞= maxi
∑

j |gi j |, ‖ G ‖�1=
∑

i j |gi j |, ‖ G ‖�∞= maxi j |gi j |.

123

648 J Glob Optim (2009) 45:645–666

In this paper, we address the case where no perturbations are allowed for the zero coef-
ficients of the constraint matrix for finding an optimal correction using the Frobenius norm,
which leads to a different formulation than the one presented in [8]. The resulting problem
turns out to be a nonconvex program with an objective function that is a sum of fractional
functions, subject to a set of linear constraints.

When applied to a nonconvex programming problem, existing unconstrained optimization
techniques can guarantee at most a local optimum [9,27]. A certificate is required to confirm
that such a solution found by an algorithm is a global optimum for the problem under con-
sideration. The computation of lower bounds is the most common way for achieving such a
certificate and has motivated and justified the development of a branch-and-bound algorithm
for solving this nonconvex program.

The procedure we adopt to compute lower bounds shares some common features with the
RLT approach and relies on overestimating the denominator function. Computational expe-
rience with medium-scale problems show the appropriateness of the proposed algorithm for
solving this problem. Numerical results included in this paper also indicate that, on the other
hand, a local solver was unable to find a global optimum for almost half of the instances
tested by the branch-and-bound algorithm.

The remainder of this paper is organized as follows. The formulation of the optimal
correction problem as a nonconvex fractional program is discussed in Sect. 2. The branch-
and-bound algorithm is introduced in Sect. 3. Some computational experience is reported in
Sect. 4, and 5 provides concluding remarks.

2 Fractional programming formulation

Consider the optimal correction problem (1) with the Frobenius norm:

(P0) : min ϕ = 1

2

⎛

⎝
m∑

i=1

n∑

j=1

h2
i j +

m∑

i=1

p2
i

⎞

⎠

subject to
n∑

j=1

(ai j + hi j)x j ≤ bi + pi , i = 1, . . . m0 (2)

n∑

j=1

(ai j + hi j)x j = bi + pi , i = m0 + 1, . . . , m

x ∈ �.

Let

I = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n, ai j �= 0} (3)

I = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n, ai j = 0} (4)

Ii = { j : 1 ≤ j ≤ n, (i, j) ∈ I }, i = 1, . . . , m. (5)

By assuming that hi j = 0 for all (i, j) ∈ I , we obtain the following formulation of the
zero-preserving optimal correction problem:

(P1) : min ϕ = 1

2

⎛

⎝
∑

(i, j)∈I

h2
i j +

m∑

i=1

p2
i

⎞

⎠ (6)

123

J Glob Optim (2009) 45:645–666 649

subject to
∑

j∈Ii

(ai j + hi j)x j ≤ bi + pi , i = 1, . . . m0, (7)

∑

j∈Ii

(ai j + hi j)x j = bi + pi , i = m0 + 1, . . . m, (8)

x ∈ �. (9)

The Lagrangian function of P1 is

L(x, h, p, λ) = min
1

2

⎛

⎝
∑

(i, j)∈I

h2
i j +

m∑

i=1

p2
i

⎞

⎠+
m∑

i=1

λi

⎛

⎝
∑

j∈Ii

(ai j + hi j)x j − bi − pi

⎞

⎠ ,

(10)

with λi ≥ 0 for i = 1, . . . , m0. As in [8], we attempt to find an equivalent representation
of problem P1 in only the x-variables. This is done by eliminating the unrestricted variables
hi j , (i, j) ∈ I and pi , i = 1, . . . , m, using the necessary and sufficient KKT conditions for
Problem P1 whenever x ∈ � is fixed (whence it is a linearly constrained convex quadratic
program). It follows from these conditions that λi ≥ 0, i = 1, . . . , m0, and

∂L

∂hi j
= 0⇔ hi j + λi x j = 0⇔ hi j = −λi x j , (i, j) ∈ I, (11)

∂L

∂pi
= 0⇔ pi − λi = 0⇔ pi = λi , i = 1, . . . , m, (12)

λi

⎛

⎝
∑

j∈Ii

(ai j + hi j)x j − bi − pi

⎞

⎠ = 0, i = 1, . . . , m0. (13)

Using (11) and (12) to eliminate the variables hi j and pi , we can write (13) in the form:

λi

⎛

⎝
∑

j∈Ii

ai j x j − bi − λi

⎛

⎝
∑

j∈Ii

x2
j + 1

⎞

⎠

⎞

⎠ = 0, i = 1, . . . , m0. (14)

From (14) we have,

λi = 0 or λi =
∑

j∈Ii
ai j x j − bi

∑
j∈Ii

x2
j + 1

, i = 1, . . . , m0. (15)

Since λi ≥ 0, for all i = 1, . . . , m0, we select

λi =
(∑

j∈Ii
ai j x j − bi

)+

∑
j∈Ii

x2
j + 1

, i = 1, . . . , m0, (16)

where (z)+ = max{0, z}.
Furthermore, repeating the above simplification in (13–15), for the equality constraints

(8), we get

λi =
(∑

j∈Ii
ai j x j − bi

)

∑
j∈Ii

x2
j + 1

, i = m0 + 1, . . . , m. (17)

123

650 J Glob Optim (2009) 45:645–666

Due to the definition of λi given by (16) and (17), and using (11) and (12), the constraints
(7) and (8) automatically hold. Hence, this produces a KKT solution, and therefore an opti-
mum, to the restricted problem with x fixed. Also, by (11) and (12), the objective function

in (6) is then given by (1/2)
m∑

i=1
λ2

i

[
1+ ∑

j∈Ii

x2
j

]
. Therefore, Problem P1 defined by (6–9)

is equivalent to the following nonconvex, nondifferentiable program in the x-variables:

(P2) : min
x∈� ϕ̃(x) = 1

2

⎛

⎜⎝
m0∑

i=1

⎡

⎢⎣

(∑
j∈Ii

ai j x j − bi

)+2

∑
j∈Ii

x2
j + 1

⎤

⎥⎦

+
m∑

i=m0+1

⎡

⎢⎣

(∑
j∈Ii

ai j x j − bi

)2

∑
j∈Ii

x2
j + 1

⎤

⎥⎦

⎞

⎟⎠ . (18)

By solving P2 globally and determining an optimal x-solution, we can obtain a correspond-
ing set of global optimal values of hi j and pi by first evaluating λi , i = 1, . . . , m, using (16)
and (17) and then using the formulae (11) and (12).

To illustrate this formulation, consider the linear system:

x1 + 2x2 ≤ 6

x1 + x3 ≤ −7

2x1 + x2 + x3 ≤ −5

x1 + 2x3 = 3

(x1, x2, x3) ∈ �.

The formulation of the zero preserving problem leads to the following nonconvex and non-
differentiable program:

min
x∈� ϕ̃(x) = 1

2

(
(x1 + 2x2 − 6)+2

1+ x2
1 + x2

2

+ (x1 + x3 + 7)+2

1+ x2
1 + x2

3

+ (2x1 + x2 + x3 + 5)+2

1+ x2
1 + x2

2 + x2
3

+ (x1 + 2x3 − 3)2

1+ x2
1 + x2

3

)
.

3 Branch–and–Bound algorithm based on overestimating the denominator
of the objective function

As discussed in the previous section, the objective function of Problem P2 in (18) is non-
differentiable, beside being nonconvex. However, by introducing additional nonnegative
variables vi , i = 1, . . . , m0, we obtain the following equivalent differentiable representation
of Problem P2:

123

J Glob Optim (2009) 45:645–666 651

(P3) : min f (x, v) =
m0∑

i=1

v2
i

1+∑ j∈Ii
x2

j

+
m∑

i=m0+1

(∑
j∈Ii

ai j x j − bi

)2

∑
j∈Ii

x2
j + 1

(19)

s.t.

vi ≥
∑

j∈Ii

ai j x j − bi , i = 1, . . . , m0 (20)

x ∈ � (21)

vi ≥ 0, i = 1, . . . , m0. (22)

The equivalence of P2 and P3 comes from the fact that we have a minimization problem,
where vi , for i = 1, . . . , m0, appears in the numerator of the objective function and vi ≥ 0.

In this section we introduce a branch–and–bound algorithm for finding a global optimal
solution to this problem P3. The use of branch–and–bound methods is widely used for con-
tinuous nonconvex problems [19,26,28,35,36]. The proposed branch–and–bound procedure
constructs a binary tree based on the partitioning of the hyperrectangle � ≡ [l, u] into sub-
hyperrectangles �k ≡ [lk, uk], where k = 1, . . . , K indexes the nodes that are generated
at any stage. Here, the node with label k, for 1 ≤ k ≤ K , is associated with the nonlinear
program:

(P3
k) : min f (x, v) =

m0∑

i=1

v2
i

1+∑ j∈Ii
x2

j

+
m∑

i=m0+1

(∑
j∈Ii

ai j x j − bi

)2

1+∑ j∈Ii
x2

j

(23)

s.t.

vi ≥
∑

j∈Ii

ai j x j − bi , i = 1, . . . , m0, (24)

lk ≤ x ≤ uk (25)

vi ≥ 0, i = 1, . . . , m0. (26)

The proposed branch–and–bound algorithm uses the following techniques for obtaining
lower and upper bounds for the optimal value of Problem P3

k . The procedure for obtaining a
lower bound for P3

k is based on the linearization of the functions in each of the denominators
of the objective function terms. To our knowledge this technique was first proposed in [19], but
also, the bound-factor product of the RLT scheme in [35] given by [(xk

j − l j)(uk
j − x j)]L ≥ 0

produces the same inequality, as discussed at the end of this section. More specifically, we
replace x2

j in each term of the denominator 1+∑ j∈Ii
x2

j of the objective function (23), by

the affine function δk
j x j + βk

j , such that:

δk
j x j + βk

j ≥ x2
j for x j ∈ [lk

j , uk
j], (27)

where this function yields the concave envelope of x2
j over the interval [lk

j , uk
j], as depicted

in Fig. 1. Hence,

δk
j =

(uk
j)

2 − (lk
j)

2

uk
j − lk

j

= uk
j + lk

j ,

βk
j = −uk

j l
k
j .

123

652 J Glob Optim (2009) 45:645–666

Fig. 1 Linear approximation of x2
j

This yields the following lower bounding problem:

(L B(P3
k)) : min gk(x, v) =

m0∑

i=1

v2
i

1+∑ j∈Ii
δk

j x j + βk
j

+
m∑

i=m0+1

(∑
j∈Ii

ai j x j − bi

)2

1+∑ j∈Ii
δk

j x j + βk
j

s.t.

vi ≥
∑

j∈Ii

ai j x j − bi , i = 1, . . . , m0,

lk ≤ x ≤ uk

vi ≥ 0, i = 1, . . . , m0.

The following result holds, where henceforth, ν(Pr) denotes the optimal value of any prob-
lem Pr .

Theorem 1 Let (x∗k, v∗k) be an optimal solution of Problem L B(P3
k). Then gk(x∗k, v∗k) ≤

ν(P3
k) and ν(P3) ≤ f (x∗k, v∗k).

Proof Let Q and Qk be, respectively, the set of feasible solutions of P3 and L B(P3
k). Qk is

also the set of feasible solutions of P3
k . Then Qk ⊆ Q. By the construction (27), we have,

∑

j∈Ii

(δk
j x j + βk

j) ≥
∑

j∈Ii

x2
j for x j ∈ [lk

j , uk
j]. (28)

Therefore,

1

1+∑ j∈Ii
(δk

j x j + βk
j)
≤ 1

1+∑ j∈Ii
x2

j

for x j ∈ [lk
j , uk

j]

and gk(x, v) ≤ f (x, v) for all (x, v) ∈ Qk . Hence,

min
{

gk(x, v) : (x, v) ∈ Qk
}
≤ min

{
f (x, v) : (x, v) ∈ Qk

}
.

Since Qk ⊆ Q, then ν(P3) ≤ f (x∗k, v∗k). �

123

J Glob Optim (2009) 45:645–666 653

Next, we show that L B(P3
k) is a convex program, by proving that its objective function is

convex over the constraint set of the program. Toward this end, let rk
i ≡ 1 − ∑

j∈Ii

uk
j l

k
j and

write L B(P3
k) in the following equivalent form:

min g̃k(x, v) =
m∑

i=1

v2
i

r k
i +

∑
j∈Ii

(uk
j + lk

j)x j
(29)

s.t.

vi ≥
∑

j∈Ii

ai j x j − bi , i = 1, . . . , m0, (30)

vi =
∑

j∈Ii

ai j x j − bi , i = m0 + 1, . . . , m, (31)

lk ≤ x ≤ uk (32)

vi ≥ 0, i = 1, . . . , m0.

We start by proving the following technical result.

Theorem 2 The function

ζi (vi , x1, . . . , xni) ≡
v2

i

ci +∑ni
j=1 d j x j

(33)

is convex on Z ≡ R× {(x1, . . . , xni) ∈ R
ni : ci +

ni∑
j=1

d j x j > 0}.

Proof The gradient and hessian of ζi are given by

∇ζi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2vi

ci+∑ni
j=1 d j x j

−d1v
2
i

(ci+∑ni
j=1 d j x j)

2

−d2v2
i

(ci+∑ni
j=1 d j x j)

2

...
−dni v

2
i

(ci+∑ni
j=1 d j x j)

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

∇2ζi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
ci+∑ni

j=1 d j x j
− 2vi d1

(ci+∑ni
j=1 d j x j)

2
− 2vi d2

(ci+∑ni
j=1 d j x j)

2
. . . − 2vi dni

(ci+∑ni
j=1 di x j)

2

− 2vi d1

(ci+∑ni
j=1 d j x j)

2

2v2
i d2

1

(ci+∑ni
j=1 d j x j)

3

2v2
i d1d2

(ci+∑ni
j=1 d j x j)

3
. . .

2vi d1dni

(ci+∑ni
j=1 di x j)

2

− 2vi d2

(ci+∑ni
j=1 d j x j)

2

2v2
i d1d2

(ci+∑ni
j=1 d j x j)

3

2v2
i d2

2

(ci+∑ni
j=1 d j x j)

3
. . .

2vi d2dni

(ci+∑ni
j=1 di x j)

2

...
...

...
...

...

− 2vi dni

(ci+∑ni
j=1 d j x j)

2

2v2
i d1dni

(ci+∑ni
j=1 d j x j)

3

2v2
i d2dni

(ci+∑ni
j=1 d j x j)

3
. . .

2vi d2
ni

(ci+∑ni
j=1 di x j)

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

123

654 J Glob Optim (2009) 45:645–666

Denoting

γi = 1

ci +∑ni
j=1 d j x j

,

then

∇2ζi = 2γi

⎡

⎢⎢⎢⎢⎢⎣

−1
γi d1vi

γi d2vi
...

γi dni vi

⎤

⎥⎥⎥⎥⎥⎦
[−1, γi d1vi , γi d2vi , . . . , γi dni vi].

For yT ≡ [y0, y1, . . . , yni], we have,

yT∇2ζi (vi , , x1, . . . , xni)y = 2γi

⎛

⎝−y0 +
ni∑

j=1

y jγi d jvi

⎞

⎠
2

≥ 0,∀y ∈ R
ni+1,

for each (vi , x1, . . . , xni) ∈ Z. Therefore, ζi is convex on Z. �

We are now able to prove that the lower bounding problem is a convex program.

Theorem 3 The function

g̃k(x, v) =
m∑

i=1

v2
i

r k
i +

∑
j∈Ii

(uk
j + lk

j)x j

in (29) is convex over the constraint set of L B(P3
k).

Proof This follows from Theorem 2, noting that (27) implies that γi > 0, ∀i = 1, . . . , m
over the feasible region of L B(P3

k), and from the fact that the sum of convex functions is
convex. �

As a consequence of this result, a global minimum for L B(P3
k) can be obtained as a sta-

tionary point of the objective function over its constraint set. This can be easily determined
using a local nonlinear program solver, such as MINOS [31].

To continue the description of the branch–and–bound algorithm, we need to define the
choice of the branching variable and the order in which the open nodes on the tree are inves-
tigated. As recommended in [36] and [35], the index s for the branching variable xs can be
chosen according to the following criterion, where x∗k solves Problem L B(P3

k):

s = arg max j=1,...,n

{(
(uk

j + lk
j)x∗kj − uk

j l
k
j

)
− (x∗kj)2

}
. (34)

The branching procedure is based on the partitioning of the interval [lk
s , uk

s] into two intervals,
where xs is the chosen variable for branching at the current node. This is done according
to one of two rules. In the first rule, called Branching Rule A, the set �k ≡ [lk, uk] is
partitioned into �K+1 ≡ [l K+1, uK+1

]
and �K+2 ≡ [l K+2, uK+2

]
, where

l K+1 = lk, uK+1
j =

{
uk

j for j �= s
lk

j+uk
j

2 for j = s
(35)

l K+2
j =

{
lk

j for j �= s
lk

j+uk
j

2 for j = s
, uK+2 = uk . (36)

123

J Glob Optim (2009) 45:645–666 655

Fig. 2 Linear approximation of x2
j for the next pair of generated nodes

In an alternative Branching Rule B, we again select the branching index according to (34),
but in lieu of bisecting the corresponding interval [lk

s , uk
s], we cut it at the value x∗ks . This is

motivated by the fact that the error in the approximation of Fig. 1 is zero at the end points,
and we would like to drive the error due to the linear approximation adopted in L B(P3

k) to
zero. Hence, in this case, we partition �k into �K+1 and �K+2, where

�K+1 =
{

x : lk
j ≤ x j ≤ uk

j , j = 1, . . . , n, j �= s, lk
s ≤ xs ≤ x∗ks

}
, (37)

�K+2 =
{

x : lk
j ≤ x j ≤ uk

j , j = 1, . . . , n, j �= s, x∗ks ≤ xs ≤ uk
s

}
. (38)

By doing this, we expect to improve the affine approximation for x2
s in the nodes gener-

ated from the current node, as shown in Fig. 2, and consequently to reduce the gap between
gk(x, v) and f (x, v), leading to better lower bounds.

In either branching rule, note that whenever the argument {·} in (34) for j = s is zero, then
(x∗k, v∗k) is an optimal solution for P3

k and provides an upper bound U B = f (x∗k, v∗k) for
the original problem P3 and the node can be fathomed.

Let us consider now the task of finding upper bounds. An initial upper bound can be
computed as a stationary point of P3 given by (19–22). For each generated node, the upper
bound can be updated as possible, by computing the value of the objective function in the
unconstrained formulation P2 given by (18) at x∗k , where (x∗k, v∗k) is the solution obtained
for the lower bounding problem L B(P3

k).
Finally, the nodes may be investigated according to the least lower bound rule, that is,

according to the criteria:

k ∈ arg min
{
ν(L B(P3

t)) : t ∈ L
}
, (39)

where k is the label of the selected node for partitioning and L is the set of open nodes in the
tree.

The steps of the branch–and–bound algorithm can now be formally summarized as fol-
lows. Let

k—be the index for the current lower bounding problem under analysis;
U B—the best known upper bound;
xinc—the incumbent solution;

123

656 J Glob Optim (2009) 45:645–666

L—the queue of indices of subproblems created but not expanded;
K —the number of nodes generated apart from the root node;
L B(P3

k)—the kth lower bounding problem;
(x∗k, v∗k)—the optimal solution obtained for L B(P3

k);
ε—the specified optimality tolerance (ε ≥ 0);
ν(.)—the optimal value of Problem (.).

Branch–and–Bound algorithm (B&B)

0—(Initialization) Let K = 0, k = 0, L = {0}, and ε ≥ 0 (practically, we select ε = 10−6).
Solve L B(P3

0). Find a stationary point for P3
0 and let (x∗, v∗) be the solution obtained.

Update U B = f (x∗, v∗) and set xinc = x∗.
1—(Choice of node) If L = ∅ then stop; otherwise find k by using (39). Set L ← L − {k}.
2—(Branching rule) Find a branching index s via (34).
3—(Solve,Update, and Queue) Set i = 1.

3.1 Define �K+i according to Branching Rule A (35–36) or Branching Rule B (37–38).
Solve Problem L B(P3

K+i).
3.2 If ν(L B(P3

K+i)) < U B(1−ε) then set L ← L
⋃{K+i} and go to Step 3.3; otherwise,

go to Step 3.4.
3.3 UpdateU B accordingly toU B ← min{ f (x∗K+i , v∗K+i), U B}. IfU B changes remove

all indices t ∈ L for which ν(L B(P3
t)) ≥ U B(1− ε) and set xinc = x∗K+i .

3.4 If i = 2 then set K ← K + 2 and go to Step 1; otherwise, let i = 2 and go to Step 3.1.

The next theorem establishes the convergence of the algorithm.

Theorem 4 The algorithm B&B (run with ε = 0 and with Branching Rule A or B) either ter-
minates finitely with a global optimum to problem P3, or else, an infinite branch-and-bound
tree is generated, which is such that any accumulation point of the solution to the lower
bounding problem along any infinite branch of the enumeration tree is a global optimum to
Problem P3.

Proof The case of finite convergence is obvious from the validity of the lower and upper
bounds derived by the algorithm. Hence, suppose that an infinite branch-and-bound tree is
generated. Then, considering an infinite branch, there exists a branching variable index s that
is selected infinitely often. Let S index the nodes along this infinite branch for which the
branching index is given by s, and over some convergent subsequence indexed by S1 ⊆ S,
say, let

{(x∗k, v∗k, lk, uk, gk((x∗k, v∗k))}S1 → (x∗, v∗, l∗, u∗, V∗). (40)

We must show that (x∗, v∗) solves P3. First (x∗, v∗) is clearly feasible to P3. For Branching
Rule A, by the bisection process (35–36), we have that

x∗s = l∗s = u∗s . (41)

Alternatively by the Branching Rule B, following the argument in [36], it is easily seen that

x∗s = l∗s or x∗s = u∗s . (42)

Moreover, by (27) and the branching index choice rule (34), we have,
[
(uk

s + lk
s)x∗ks − uk

s lk
s

]
− (x∗ks)2 ≥

[
(uk

j + lk
j)x∗kj − uk

j l
k
j

]

−(x∗kj)2 ≥ 0, ∀ j = 1, . . . , n, ∀k ∈ S1. (43)

123

J Glob Optim (2009) 45:645–666 657

Hence, taking limits in (43) as k → ∞, k ∈ S1, and using (40) and either (41) or (42), we
get

(x∗j)2 = (u∗j + l∗j)x∗j − u∗j l∗j , ∀ j = 1, . . . , n,

which implies that

V∗ = f (x∗, v∗) ≥ ν(P3). (44)

However, by the node selection rule (34), we have that ν[L B(P3
k)] ≤ ν(P3), ∀k ∈ S1,

which in the limit as k → ∞, k ∈ S1 yields via (40) that V∗ ≤ ν(P3). Hence, by (44),
V∗ = f (x∗, v∗) = ν(P3), and so (x∗, v∗) solves P3. �

The RLT approach described in [8] can also be useful to generate lower-bounds for prob-
lem P3

k . In this type of approach, new variables αi , i = 1, . . . , m, and y j , j = 1, . . . , n, are
introduced such that

αi =
∑

j∈Ii

y j , i = 1, . . . , m. (45)

x2
j = y j , j = 1, . . . , n. (46)

In order to get a convex program, the n constraints (46) are relaxed into x2
j ≤ y j . Furthermore,

the following relaxed linear bound-factor constraints are introduced:
[
(x j − lk

j)(u
k
j − x j)

]

L
≥ 0, ∀ j = 1, . . . , n,

where the operator [·]L performs linearization of the product term [·] under the substitution
y j = x2

j , ∀ j = 1, . . . , n. Therefore,
[
(x j − lk

j)(u
k
j − x j)

]

L
=
[
x j u

k
j − lk

j uk
j + lk

j x j − x2
j

]

L
(47)

= (uk
j + lk

j)x j − lk
j uk

j − y j (48)

and the following lower bounding problem L B(P3
k) is obtained:

(L B(P4
k)) : min fR(x, v, α) =

m0∑

i=1

v2
i

1+ αi
+

m∑

i=m0+1

(∑
j∈Ii

ai j x j − bi

)2

1+ αi
(49)

s.t.

vi ≥
n∑

j=1

ai j x j − bi , i = 1, . . . , m0, (50)

∑

j∈Ii

y j = αi , i = 1, . . . , m, (51)

x2
j ≤ y j , j = 1, . . . , n, (52)

(uk
j + lk

j)x j − lk
j uk

j ≥ y j , j = 1, . . . , n, (53)

lk ≤ x ≤ uk (54)

vi ≥ 0, i = 1, . . . , m0. (55)

Next, we show that this convex program is equivalent to problem L B(P3
k). To do this, we

first eliminate the variables αi by using (51). On the other hand, due to the definition of the

123

658 J Glob Optim (2009) 45:645–666

Table 1 Characteristics of test
problems from Netlib

Name m n

Galenet 8 8

Itest2 9 4

Itest6 11 8

Bgprtr 20 34

Forest6 66 95

Woodinfe 35 89

lower-bound problem, the constraints (53) should hold as equalities in any optimal solution
of the convex program. By replacing the variables y j by their values from these equations,
we get the problem L B(P3

k) with the further quadratic constraint

x2
j ≤ (uk

j + lk
j)x j − lk

j uk
j , j = 1, . . . , n.

Since these constraints are redundant by construction, they may be eliminated and the RLT
lower bounding problem reduces to Problem L B(P3

k).

4 Computational experience

In order to test the performance of Algorithm B&B we report some computational results
for a set of infeasible linear systems of the type:
⎧
⎨

⎩x ∈R
n :

n∑

j = 1

ai j x j ≤ bi , i = 1, . . . , m0,

n∑

j = 1

ai j x j = bi , i =m0+1, . . . , m, l ≤ x ≤ u

⎫
⎬

⎭ ,

where A = [ai j] is a real matrix of order m × n and b = [bi] is a real vector of size m.
We consider two sets of problems. The first group is taken from a set of infeasible linear
programming problems2 selected from Netlib.3 For the application of the algorithm in its
current version, we have added lower and upper bounds, whenever not pre-specified. We
used li = 1 and ui = 5, for all i . As discussed later, other values for these lower and upper
bounds have also been tested. Table 1 includes the number of constraints m and variables n
of the chosen Netlib problems.

The second set consists of specially generated problems having some singular properties,
described in [8], to which we have added a set of finite lower and upper bounds, given by
li = 1 and ui = 5 for all i . Table 2 summarizes the dimensions of these problems. Given that
the proposed approach would typically be applied to an IIS from a certain parent problem,
the sizes of problems considered in Tables 1 and 2 are adequate in practice.

All the tests have been performed on a Pentium IV (Intel) with Hyperthreading, CPU 3.0
GHz, 2Gb RAM, and operating system Linux. The method was implemented in the Gen-
eral Algebraic Modeling System (GAMS) [10] language (Rev 118 Linux/Intel) and the NLP
solver MINOS (Version 5.5) has been used to compute the lower bounds required at each

2 Test problems compiled by John W. Chinneck.
3 The Netlib repository contains freely available software, documents, and databases. The repository is main-
tained by AT&T Bell Laboratories, the University of Tennessee, and the Oak Ridge National Laboratory,
among other individual contributors.

123

J Glob Optim (2009) 45:645–666 659

Table 2 Dimension of test
problems

Name m n

Pro6 to Pro10 20 10

Pro11 to Pro15 30 15

Pro16 to Pro20 40 20

Table 3 Computational results for Algorithm B&B-A

Problems B&B-A

ρ ND CPU ITER INITUB VALOPT NDOPT NUPDUB

Galenet 6 1 0.04 18 26.9608 26.9608 1 0

Itest2 6 20 0.17 110 0.9059 0.9059 1 0

Itest6 6 1 0.06 7 4,46,274,332.2501 4,46,274,332.2501 1 0

Bgprtr 1 1 0.01 60 67,358.9157 67,358.9157 1 0

Forest 1 32 0.25 598 65,213.6032 65,213.6032 1 0

Woodinfe 1 1 0.04 96 0.5060 0.5060 1 0

Prob4 6 6 0.05 220 157.6815 157.6815 1 0

Prob5 6 6 0.09 93 264.7228 262.8295 5 2

Prob6 6 7 0.09 316 315.1673 315.1673 1 0

Prob7 6 85 0.79 4,626 214.8726 214.8726 1 0

Prob8 6 1 0.03 54 2,187.0132 2,187.0132 1 0

Prob9 6 24 0.17 1,534 149.3484 149.3484 1 0

Prob10 6 34 0.30 1,379 250.8560 250.8560 1 0

Prob11 6 28 0.39 1,859 396.0405 396.0405 1 0

Prob12 6 3 0.03 199 1,130.5302 1,130.5302 1 0

Prob13 6 12 0.24 738 679.4526 679.4526 1 0

Prob14 6 6 0.21 426 756.9513 756.9513 1 0

Prob15 6 600 10.35 69,939 364.4502 364.4502 1 0

Prob16 6 23 0.66 2,775 1,121.5359 1,121.5359 1 0

Prob17 6 22 0.54 2,603 1,092.9802 1,092.9802 1 0

Prob18 6 8 0.29 917 1,738.2852 1,738.2852 1 0

Prob19 6 28 0.75 3,942 1,104.5614 1,104.5614 1 0

Prob20 6 105 3.10 15,972 944.7827 944.7827 1 0

node and for computing the upper bound at the root node. We present results for the algo-
rithm described in Sect. 3 (Branch–and–Bound Algorithm). Since we implemented two
Branching Rules A and B, we use the designations B&B-A and B&B-B to distinguish the
respective results. The tolerance parameter ε was set to 10−6 in all problems. We limited the
maximum number of nodes generated to 1,000 in the tree. Larger tolerances, 10−ρ , where
1 ≤ ρ ≤ 5 and integer, have been used whenever the algorithm is unable to terminate in less
than the maximum limit of 1,000 nodes for the tolerance 10−6. These cases are displayed in
the column of the parameter ρ, defined below. Each table reports the following information
for each test problem:

ρ: maximum integer value belonging to {1, 2, 3, 4, 5, 6} for which the algorithm has been
able to terminate in less than 1,000 nodes;

123

660 J Glob Optim (2009) 45:645–666

Table 4 Computational results for Algorithm B&B-B

Problems B&B-B

ρ ND CPU ITER INITUB VALOPT NDOPT NUPDUB

Galenet 6 1 0.03 17 26.9608 26.9608 1 0

Itest2 6 11 0.10 72 0.9059 0.9059 1 0

Itest6 6 1 0.04 7 4,46,274,332.2501 4,46,274,332.2501 1 0

Bgprtr 4 966 5.30 3,985 67,358.9157 67,358.9157 1 0

Forest 1 95 0.88 1,071 65,213.6032 65,213.6032 1 0

Woodinfe 1 1 0.02 96 0.5060 0.5060 1 0

Prob4 6 5 0.05 189 157.6815 157.6815 1 0

Prob5 6 5 0.07 78 264.7228 262.8295 4 1

Prob6 6 5 0.10 208 315.1673 315.1673 1 0

Prob7 6 68 0.60 3,572 214.8726 214.8726 1 0

Prob8 6 1 0.07 46 2,187.0132 2,187.0132 1 0

Prob9 6 20 0.26 1,192 149.3484 149.3484 1 0

Prob10 6 29 0.28 1,244 250.8560 250.8560 1 0

Prob11 6 26 0.33 1,596 396.0405 396.0405 1 0

Prob12 6 3 0.06 190 1,130.5302 1,130.5302 1 0

Prob13 6 12 0.16 811 679.4526 679.4526 1 0

Prob14 6 6 0.07 420 756.9513 756.9513 1 0

Prob15 6 642 5.67 24,340 364.4502 364.4502 1 0

Prob16 6 26 0.59 2,916 1,121.5359 1,121.5359 1 0

Prob17 6 27 0.75 2,914 1,092.9802 1,092.9802 1 0

Prob18 6 8 0.23 790 1,738.2852 1,738.2852 1 0

Prob19 6 25 0.67 3,455 1,104.5614 1,104.5614 1 0

Prob20 6 199 5.28 28,638 944.7827 944.7827 1 0

ND: total number of nodes in the tree;
CPU: total CPU time in seconds;
ITER: total number of MINOS iterations;
INITUB: initial upper bound (obtained at the root node);
VALOPT: optimal value;
NDOPT: node at which the optimal solution was obtained;
NUPDUB: number of upper bound updates.

The results show that the local nonlinear programming algorithm employed at the root
node always computes a strong upper bound, which is often the global minimum of the
fractional program, although this yet requires some enumeration (see the column for ND) to
verify optimality. When the optimal solution is not obtained at the root node, then it is found
almost towards the end of the tree search, and the number of upper bound updates is quite
small. Comparing the performance of the two branching rules, there is no great evidence
of supremacy of one with respect to the other. As far as the computational time, number of
iterations and number of nodes are concerned, the best performance for each problem alter-
nates between both algorithms. However, for approximately 74% of the problems, a fewer
number of iterations (ITER) resulted with Branching Rule A than with Branching Rule B.
In addition, Problem Bgprtr was solved with a tolerance ε = 10−4 using Branching Rule

123

J Glob Optim (2009) 45:645–666 661

Table 5 Computational results for Algorithm B&B-A

Problems B&B-A

t ρ ND CPU ITER INITUB VALOPT NDOPT NUPDUB

Itest2 1 1 1 0.02 21 9.0000 9.0000 1 0

1 2 2 0.03 26 9.0000 9.0000 1 0

1 3 3 0.04 30 9.0000 9.0000 1 0

1 4 5 0.10 38 9.0000 9.0000 1 0

1 5 7 0.17 46 9.0000 9.0000 1 0

1 6 8 0.06 50 9.0000 9.0000 1 0

Itest2 5 1 1 0.04 35 0.8999 0.8999 1 0

5 2 9 0.11 114 0.8999 0.8999 1 0

5 3 15 0.14 151 0.8999 0.8999 1 0

5 4 23 0.23 198 0.8999 0.8999 1 0

5 5 33 0.25 243 0.8999 0.8999 1 0

5 6 42 0.31 277 0.8999 0.8999 1 0

Itest2 50 1 19 0.09 718 0.7418 0.7418 1 0

50 2 37 0.28 1,242 0.7418 0.7418 1 0

50 3 60 0.29 1,922 0.7418 0.7418 1 0

50 4 83 0.40 2,499 0.7418 0.7418 1 0

50 5 111 0.59 3,150 0.7418 0.7418 1 0

50 6 135 0.62 3,657 0.7418 0.7418 1 0

Itest2 500 1 34 0.27 1,900 0.7418 0.7418 1 0

500 2 64 0.56 2,968 0.7418 0.7418 1 0

500 3 96 0.72 4,027 0.7418 0.7418 1 0

500 4 117 0.61 4,657 0.7418 0.7418 1 0

500 5 144 1.13 5,376 0.7418 0.7418 1 0

500 6 151 1.08 5,529 0.7418 0.7418 1 0

Bgprtr 1 1 1 0.08 42 13,099.7326 13,099.7326 1 0

1 2 16 0.19 189 13,099.7326 13,099.7326 1 0

1 3 56 0.33 534 13,099.7326 13,099.7326 1 0

1 4 121 0.69 982 13,099.7326 13,099.7326 1 0

1 5 271 1.31 1,986 13,099.7326 13,099.7326 1 0

1 6 624 3.61 4,209 13,099.7326 13,099.7326 1 0

Bgprtr 5 1 10 0.13 407 656.4412 656.4412 1 0

5 2 − – − − − − –

Bgprtr 50 1 14 0.15 874 3.6797 3.6797 1 0

50 2 − – − − − − –

Bgprtr 500 1 1 0.05 298 0.0070 0.0070 1 0

500 2 1 0.05 298 0.0070 0.0070 1 0

500 3 − – − − − − –
Woodinfe 1 1 1 0.03 119 26.5921 26.5921 1 0

1 2 1 0.03 119 26.5921 26.5921 1 0

123

662 J Glob Optim (2009) 45:645–666

Table 5 continued

Problems B&B-A

t ρ ND CPU ITER INITUB VALOPT NDOPT NUPDUB

1 3 107 0.81 1,807 26.5921 26.5921 1 0

1 4 352 2.42 4,885 26.5921 26.5921 1 0

1 5 554 3.44 7,004 26.5921 26.5921 1 0

1 6 628 3.67 7,637 26.5921 26.5921 1 0

B, while for the Branching Rule A, the maximum number (1,000) of nodes allowed was
reached without satisfying the stopping criterion. Actually, for this latter rule, the tolerance
had to be increased to 10−1 for the algorithm to be able to terminate. Another relatively
difficult problem in this test-bed is Prob15, for which B&B-B again yielded a significantly
superior performance in terms of computational time and iterations, despite the number of
nodes being larger. Given that the remaining problems (except for Prob20) took less than 1
cpu second to be solved, we recommend B&B-B on an overall basis. Also, the root node
algorithm evidently offers a strong heuristic for this class of problems.

In a second experiment, we performed a sensitivity analysis for the values of the upper
bounds that we have added to the last five NETLIB problems (Galenet has its own lower
and upper bounds and is not included in these tests). This was done by choosing the lower
and upper bounds for each variable xi such that li = 0 and ui = t , for t = 1, 5, 50, 500.
Furthermore, we ran the algorithm for different tolerances 10−ρ , where ρ ∈ {1, 2, 3, 4, 5, 6},
and where this tolerance was used to end the tree search. The results of this experiment are
displayed in Tables 5 and 6, where “-” means that the algorithm was unable to terminate for
a tolerance smaller than or equal to 10−ρ , for a ρ given in this row. We have not included
in these tables the performance of the algorithms for Problem Itest6, as termination always
occurred at the initial node itself with 7 iterations for a tolerance of 10−6, independent of the
chosen lower and upper bounds. Likewise, we do not display results for Problem Woodinfe
for t ≥ 5, or for Problem Forest for t ≥ 1, because the procedures failed to terminate,
although we did obtain a successful termination for li = 1 and ui = 5, ∀i , with ρ = 1 (see
Tables 3 and 4).

For the remaining NETLIB problems the algorithm appears to be quite efficient whenever
the amplitude of the bounds is equal to one. As expected, the computational effort increases
with a decrease of the value of the tolerance. The performance of the algorithm for amplitudes
50 and 500 is usually worse than for the first case, but sometimes, as with Problem Bgprtr,
wider bounds yield an improved solution (at the initial node itself), which thereby induces a
faster termination. The algorithm successfully terminated for a tolerance 10−1 or 10−2 but
was unable to guarantee a global minimum for smaller values of the tolerance. As expected,
the set � has a significant impact on the efficiency of the branch-and-bound algorithm. Dif-
ferent strategies for defining tighter bounds for the set � as implied by the model structure
and underlying application may lead to a better performance for the algorithm and should be
studied in future research.

Finally we have compared the optimal value of the problem with the value of the objective
function obtained using a local solver. We used the function fmincon from Matlab applied to
the nonconvex formulation (18) with box constraints. We adopted the same bounds as those
used in the branch–and–bound approach. In Table 7 we present in column V AL O PT the

123

J Glob Optim (2009) 45:645–666 663

Table 6 Computational results for Algorithm B&B-B

Problems B&B-B

t ρ ND CPU ITER INITUB VALOPT NDOPT NUPDUB

Itest2 1 1 1 0.04 15 9.0000 9.0000 1 0

1 2 1 0.04 15 9.0000 9.0000 1 0

1 3 2 0.05 18 9.0000 9.0000 1 0

1 4 3 0.06 20 9.0000 9.0000 1 0

1 5 4 0.07 22 9.0000 9.0000 1 0

1 6 4 0.06 22 9.0000 9.0000 1 0

Itest2 5 1 1 0.03 30 0.8999 0.8999 1 0

5 2 10 0.12 112 0.8999 0.8999 1 0

5 3 16 0.12 158 0.8999 0.8999 1 0

5 4 28 0.14 228 0.8999 0.8999 1 0

5 5 33 0.19 258 0.8999 0.8999 1 0

5 6 40 0.20 304 0.8999 0.8999 1 0

Itest2 50 1 24 0.11 471 0.7418 0.7418 1 0

50 2 109 0.58 1, 824 0.7418 0.7418 1 0

50 3 150 0.61 2, 338 0.7418 0.7418 1 0

50 4 164 0.91 2, 522 0.7418 0.7418 1 0

50 5 180 0.96 2, 680 0.7418 0.7418 1 0

50 6 197 0.96 2, 837 0.7418 0.7418 1 0

Itest2 500 1 51 0.44 1, 289 0.7418 0.7418 1 0

500 2 212 0.96 4, 627 0.7418 0.7418 1 0

500 3 243 1.18 5, 163 0.7418 0.7418 1 0

500 4 262 1.32 5, 386 0.7418 0.7418 1 0

500 5 292 1.57 5, 676 0.7418 0.7418 1 0

500 6 323 1.35 5, 957 0.7418 0.7418 1 0

Bgprtr 1 1 1 0.03 43 13, 099.7326 13, 099.7326 1 0

1 2 7 0.08 70 13, 099.7326 13, 099.7326 1 0

1 3 7 0.08 70 13, 099.7326 13, 099.7326 1 0

1 4 15 0.15 111 13099.7326 13, 099.7326 1 0

1 5 15 0.14 111 13, 099.7326 13, 099.7326 1 0

1 6 17 0.17 122 13, 099.7326 13, 099.7326 1 0

Bgprtr 5 1 3 0.03 186 656.4412 656.4412 1 0

5 2 127 0.61 3, 544 656.4412 656.4412 1 0

5 3 − − − − − – –

Bgprtr 50 1 63 0.65 2, 460 3.6797 3.6797 1 0

50 2 251 1.68 9, 933 3.6797 3.6797 1 0

50 3 − − − − − – –

Bgprtr 500 1 1 0.03 269 0.0070 0.0070 1 0

500 2 1 0.05 269 0.0070 0.0070 1 0

500 3 63 0.55 1, 461 0.0070 0.0070 1 0

500 4 − − − 0.0070 0.0070 1 0

123

664 J Glob Optim (2009) 45:645–666

Table 6 continued

Problems B&B-B

t ρ ND CPU ITER INITUB VALOPT NDOPT NUPDUB

Woodinfe 1 1 1 0.03 120 26.5921 26.5921 1 0

1 2 1 0.03 120 26.5921 26.5921 1 0

1 3 111 0.54 1780 26.5921 26.5921 1 0

1 4 250 1.65 3300 26.5921 26.5921 1 0

1 5 452 2.71 5635 26.5921 26.5921 1 0

1 6 556 3.70 6, 660 26.5921 26.5921 1 0

Table 7 Global versus local
solvers

Problems VALOPT NLP-con

Galenet 26.9608 26.9608

Itest2 0.9059 0.9059

Itest6 4,46,274,332.2501 4,46,274,332.2501

Bgprtr 67,358.9157 67,358.9157

Forest 65,213.6032 65,213.6032

Woodinfe 0.5060 1.0000

Prob4 157.6815 157.6815

Prob5 264.7228 272.6953

Prob6 315.1673 354.4125

Prob7 214.8726 214.8726

Prob8 2,187.0132 2,387.1776

Prob9 149.3484 149.3484

Prob10 250.8560 250.8560

Prob11 396.0405 396.0405

Prob12 1,130.5302 1,152.3014

Prob13 679.4526 679.4526

Prob14 756.9513 756.9513

Prob15 364.4502 392.3507

Prob16 1,121.5359 1,157.0987

Prob17 1,092.9802 1,096.6078

Prob18 1,738.2852 1,825.2504

Prob19 1,104.5614 1,125.3224

Prob20 944.7827 944.7827

optimal value obtained by the branch–and–bound procedure and in column N L P—con the
value of the solution obtained using f mincon from Matlab.

The results show that in 10 of the 23 problems the value of the solution obtained using
the local solver was not the global optimal solution (these are displayed in bold in Table 7).
In our opinion, this experience supports our decision to design a branch-and-bound global
optimization algorithm to find the minimum Frobenius norm correction.

123

J Glob Optim (2009) 45:645–666 665

5 Conclusions

This paper introduces a fractional programming formulation for a zero preserving correction
of general inconsistent systems of linear constraints. Such systems analyzed might typically
be IIS substructures inherent within some parent model. A branch-and-bound (B&B) algo-
rithm is discussed for finding a global minimum to this optimization problem. This procedure
is based on the linearization of the functions in each denominator of the fractional terms in the
objective function. The tree search procedure developed is based on partitioning the domain
of the original variables, where two different branching strategies are proposed, and also
incorporates techniques for obtaining upper bounds at the root node as well as at each node
of the enumeration tree. Theoretical convergence of the proposed B&B algorithm has been
established. Computational experience reported on problems with (m, n) ranging up to (96,
95) shows that the B&B algorithm is effective for processing the equivalent reformulated
fractional programming problem (particularly with Branching Rule B), and also, the root
node upper bounding procedure offers a strong heuristic that can be efficiently applied for
analyzing relatively larger problems than those considered herein.

Acknowledgements Research partially supported by project FCT-POCI/MAT/56704/2004, Portugal, FCT-
POCI/MAT/56704/2004, Portugal and supported by the National Science Foundation, under Grant Number
CMMI - 0552676.

References

1. Amaldi, E., Kann, V.: The complexity and approximability of finding maximum feasible subsystems of
linear relations. Theor. Comput. Sci. 147, 181–210 (1995)

2. Amaldi, E., Pfetsch, M.E., Trotter, J.L.E.: On the maximum feasible subsystems, IISs and IIS-hyper-
graphs. Math. Ser. A 95, 533–554 (2003)

3. Amaral, P.: Contribuições para o estudo de sistemas lineares inconsistentes. Ph.D Disertation, Faculty of
Science and Technology, UNL, Lisbon, Portugal (2001) (in Portuguese)

4. Amaral, P., Barahona, P.: About infeasibility in the constraints of a linear model. Ricerca Operativa 92,
49–67 (1999)

5. Amaral, P., Barahona, P.: On optimal correction of inconsistent linear constraints. In: Hentenryck, P.V.
(ed). Principles and Practice of Constraint Programming, CP’2002, NY, (Procs.), Lecture Notes in Com-
puter Science, vol. 2470, pp. 33–46, Springer, Berlin (2002)

6. Amaral, P., Barahona, P.: Connections between the total least squares and the correction of an infeasible
system of linear inequalities. Linear Algebra Appl. 395, 191–210 (2005)

7. Amaral, P., Barahona, P.: A framework for optimal correction of inconsistent linear constraints. Con-
straints 10, 67–86 (2005)

8. Amaral, P., Júdice, J., Sherali, H.D.: A reformulation–linearization–convexification algorithm for optimal
correction of an inconsistent system of linear constraints. Comput. Oper. Res. 35, 1494–1509 (2008)

9. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. 3rd
edn. Wiley, New York, NY (2006)

10. Brooke, A., Kendrick, A., Meeraus, A., Raman, R.: GAMS—A User’s Guide. http://www.gams.com/
docs/document.htm

11. Chakravarti, N.: Some results concerning post-infeasibility analysis. Eur. J. Oper. Res. 73, 139–143 (1994)
12. Chinneck, J.W.: Minos(ii):Infeasibility analysis using MINOS. Comput. Oper. Res. 21, 1–9 (1994)
13. Chinneck, J.W.: An effective polynomial-time heuristic for the minimum-cardinality IIS set-covering

problem. Ann. Math. Artif. Intell. 17, 127–144 (1996)
14. Chinneck, J.W.: Finding a useful subset of constraints for analysis in an infeasible linear pro-

gram. INFORMS J. Comput. 9, 164–174 (1997)
15. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in linear programs. ORSA

J. Comput. 3, 157–168 (1991)
16. Chinneck, J.W., Saunders, M.A.: Minos(iis) version 4.2: Analyzing infeasibilities in linear programs. Eur.

J. Oper. Res 81, 217–218 (1995)

123

http://www.gams.com/docs/document.htm
http://www.gams.com/docs/document.htm

666 J Glob Optim (2009) 45:645–666

17. CPLEX: http://www.ilog.com/products/cplex/
18. Eremin, I.I.: Duality for nonproper problems of linear and convex programming, Dok1. Akad Nauk

SSSR 256(252), 272–276 (1981)
19. Falk, J.E., Soland, R.M.: Algorithm for separable nonconvex programming problems. Manag. Sci. Ser.

A Theory 15, 550–569 (1969)
20. Greenberg, H.J.: Computer-assisted analysis for diagnosing infeasible or unbounded linear pro-

grams. Math. Program. Study 31, 79–97 (1987)
21. Greenberg, H.J.: Consistency, redundancy and implied equalities in linear systems. Ann. Math. Artif.

Intell. 17, 37–83 (1993)
22. Greenberg, H.J.: Enhancements of analyse: A computer-assisted analysis system for mathematical pro-

gramming models and solutions. ACM Trans. Math. Softw. 19, 233–256 (1993)
23. Greenberg, H.J.: How to analyze the results of linear programs- Part 3: Infeasibility Diagnoses. Inter-

faces 23, 120–139 (1993)
24. Greenberg, H.J., Murphy, F.H.: Approaches to diagnosing infeasible linear programs. ORSA J. Comput.

Study 31, 79–97 (1991)
25. Guieu, O., Chinneck, J.W.: Analyzing infeasible mixed-integer and integer linear programs. INFORMS

J. Comput. 11, 63–77 (1999)
26. Holzbaur, C., Menezes, F., Barahona, P.: Defeasibility in CLP(Q) through generalised slack variables.

In: Freuder, E.C. (ed.). Proceedings of CP´96, 2nd Int. Conf. in Principles and Practice of Constraint
Programming. Lecture Notes in Computer Science, vol. 1118, pp. 209–223. Springer–Verlag, Berlin,
(1996)

27. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. 3rd edn. Springer-Verlag, Ber-
lin (1996)

28. Horst, R., Pardalos, P., Thoai, N.: Introduction to global optimization. 2nd ed. Nonconvex Optimization
and Its Applications, 48. Kluwer Academic Publishers, Dordrecht (2000)

29. LINDO: http://www.lindo.com/
30. Loon, J.N.M.: Irreducible inconsistent systems of linear inequalities. Eur. J. Oper. Res. 8, 282–288 (1981)
31. Murtagh, B.A., Saunders M.A., Murray, W., Gill, P.E., Raman, R., Kalvelagen, E.: MINOS- NLP solver

from Stanford University. http://www.gams.com/docs/document.htm
32. Pena, J.: Understanding the geometry of infeasible perturbations of a conic linear system. SIAM J.

Optim. 10, 534–550 (2000)
33. Renegar, J.: Some perturbation theory for linear programming. Math. Program. 65, 73–91 (1994)
34. Roodman, G.M.: Post-infeasibility analysis in linear programming. Manag. Sci. 25, 916–922 (1979)
35. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Contin-

uous Nonconvex Problems. Kluwer Academic Publishers, Dordrecht (1999)
36. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems

using a reformulation-linearization technique. J. Glob. Optim. 2, 101–112 (1992)
37. Tamiz, M., Mardle, S.J., Jones, D.F.: Detecting IIS in infeasible linear programmes using techniques from

goal programming. Comput. Oper. Res. 23, 113–119 (1996)
38. Vatolin, A.A.: Parametric approximation of inconsistent systems of linear equations and inequalities. Sem-

inarber., Humboldt-Univ. Berlin Sekt. Math. 81, 145–154 (1986)
39. Vatolin A.A.: Solvability sets and correction of saddle functions and inequality systems. Ural Branch

Acad. Sci. USSR, Sverdlovsk (1989) (in Russian)
40. Vatolin, A.A.: An LP-based algorithm for the correction of inconsistent linear equation and inequality

systems. Optimization 24, 157–164 (1992)
41. Vera, J.R.: Ill-posedness and the complexity of deciding existence of solutions to linear programs. SIAM

J. Optim. 6, 549–569 (1996)
42. Wang, H.F., Huang, C.S.: Inconsistent structures of linear systems. Int. J. Gen. Syst. 21, 65–81 (1992)

123

http://www.ilog.com/products/cplex/
http://www.lindo.com/
http://www.gams.com/docs/document.htm

	On optimal zero-preserving corrections for inconsistent linear systems
	Abstract
	1 Introduction
	2 Fractional programming formulation
	3 Branch--and--Bound algorithm based on overestimating the denominator of the objective function
	4 Computational experience
	5 Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

